Files
brandon_lift_share/videoprocess.py
2022-12-30 13:45:43 -05:00

105 lines
3.8 KiB
Python

import cv2
import numpy as np
import matplotlib.pyplot as plt
class VideoProcess:
def __init__(self, path):
# Used for running average calculation
self.alpha = 0.9
# Unused for now. Working on ideas for other potential processing algos
self.bucketSize = 2
# Unused for now. Working on ideas for other potential processing algos
self.frames = []
# Frame counter
self.frame = 0
# Opencv Capture object
self.cap = cv2.VideoCapture(path)
# Amount to reduce the video res by
self.scalingFactor = 4
# Rolling average of the frame to smooth out comparison and random passers by
self.frameAverage = None
# Array of the counts of diff pixels which represents motion
self.counts = []
# Rolling average of the counts
self.aveCount = 0.0
# Used to determine rolling average size
self.aveCountAlpha = 1.0 - 1.0 / 10.0
# place to store rolling average
self.aveCounts = []
# Place to store calculated times given the FPS
self.times = []
# the FPS of the camera and thus the signal rate for the sampler
self.FPS = 30.0
# Single step in the process getting a motion count
def processFrame(self):
# Making sure frames left in video
if self.cap.isOpened():
# Read a frame
ret, src = self.cap.read()
# Bails if no frames
if not ret:
return False
# Get the height and width of the video
h, w, c = src.shape
# Scale
src = cv2.resize(
src, (int(w / self.scalingFactor), int(h / self.scalingFactor))
)
# Convert to gray
gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
# Populate the frame average with the first frame
if self.frameAverage is None:
self.frameAverage = gray
# Wait till there are at least a few frames to compare
if len(self.frames) < self.bucketSize:
self.frames.append(gray)
else:
self.frames.append(gray)
self.frames.pop(0)
# Rolling average calculation
self.frameAverage = self.frameAverage * self.alpha + self.frames[0] * (
1.0 - self.alpha
)
self.frameAverage = np.uint8(self.frameAverage)
# Calculate the absolute difference between a current frame and the rolling average
# This is the magic
diff = cv2.absdiff(gray, self.frameAverage)
# Normalize the count to the maximum of pixel value
count = np.sum(diff) / (w * h * 255 / self.scalingFactor) * 100.0
# Show the result
cv2.imshow("src", src)
cv2.imshow("diff", diff)
# Unused live charting the results
# if self.frame % 10 ==0:
# self.drawPlot()
# Capture the rolling average, non-average count, and timestamps for analysis.
self.counts.append(count)
self.aveCount = self.aveCount * self.aveCountAlpha + count * (
1.0 - self.aveCountAlpha
)
self.aveCounts.append(self.aveCount)
self.times.append(self.frame / self.FPS)
# Loop control
key = cv2.waitKey(1)
if key == 27:
return False
# Iterate frame count
self.frame += 1
else:
plt.show(block=True)
return False
return True
def drawPlot(self):
plt.cla()
plt.plot(self.times, self.counts)
plt.plot(self.times, self.aveCounts)
plt.pause(0.0001)