Files
cspace/visualize.py
2025-12-12 20:41:37 -06:00

144 lines
5.5 KiB
Python

import torch
import torchaudio
import numpy as np
import matplotlib.pyplot as plt
import argparse
from cspace import CSpace
import os
def normalize(data: np.ndarray) -> tuple[np.ndarray, float]:
"""Normalizes a numpy array to the range [-1.0, 1.0] and returns it and the peak value."""
peak = np.max(np.abs(data))
if peak == 0:
return data, 1.0
return data / peak, peak
def load_and_prepare_audio(audio_path: str, target_sample_rate: int, device: str) -> np.ndarray:
"""Loads an audio file, resamples it, and converts it to a mono float32 numpy array."""
waveform, sr = torchaudio.load(audio_path)
waveform = waveform.to(device)
# Convert to mono
if waveform.shape[0] > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
# Resample if necessary
if sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sample_rate).to(device)
waveform = resampler(waveform)
audio_np = waveform.squeeze().cpu().numpy().astype(np.float32)
return audio_np
def save_audio(audio_data: np.ndarray, path: str, sample_rate: int):
"""Saves a numpy audio array to a WAV file."""
# torchaudio.save expects a tensor, shape (channels, samples)
audio_tensor = torch.from_numpy(audio_data).unsqueeze(0)
torchaudio.save(path, audio_tensor, sample_rate)
print(f"Reconstructed audio saved to {path}")
def print_reconstruction_stats(original_signal: np.ndarray, reconstructed_signal: np.ndarray):
"""Calculates and prints RMS and MSE between two signals."""
# Ensure signals have the same length for comparison
min_len = min(len(original_signal), len(reconstructed_signal))
original_trimmed = original_signal[:min_len]
reconstructed_trimmed = reconstructed_signal[:min_len]
# RMS Calculation
rms_original = np.sqrt(np.mean(np.square(original_trimmed)))
rms_reconstructed = np.sqrt(np.mean(np.square(reconstructed_trimmed)))
# MSE Calculation
mse = np.mean(np.square(original_trimmed - reconstructed_trimmed))
print("\n--- Reconstruction Stats ---")
print(f" - Original RMS: {rms_original:.6f}")
print(f" - Reconstructed RMS: {rms_reconstructed:.6f}")
print(f" - Mean Squared Error (MSE): {mse:.8f}")
print("--------------------------\n")
def visualize_cspace(cspace_data: torch.Tensor, freqs: np.ndarray, output_path: str, sample_rate: float):
"""Generates and saves a visualization of the C-Space data."""
magnitude_data = torch.abs(cspace_data).cpu().numpy().T
fig, ax = plt.subplots(figsize=(30, 5))
im = ax.imshow(
magnitude_data,
aspect='auto',
origin='lower',
interpolation='none',
cmap='magma'
)
fig.colorbar(im, ax=ax, label='Magnitude')
ax.set_title('C-Space Visualization')
ax.set_xlabel('Time (s)')
ax.set_ylabel('Frequency (Hz)')
num_samples = cspace_data.shape[0]
duration_s = num_samples / sample_rate
time_ticks = np.linspace(0, num_samples, num=10)
time_labels = np.linspace(0, duration_s, num=10)
ax.set_xticks(time_ticks)
ax.set_xticklabels([f'{t:.2f}' for t in time_labels])
num_nodes = len(freqs)
freq_indices = np.linspace(0, num_nodes - 1, num=10, dtype=int)
ax.set_yticks(freq_indices)
ax.set_yticklabels([f'{freqs[i]:.0f}' for i in freq_indices])
plt.tight_layout()
plt.savefig(output_path)
print(f"Visualization saved to {output_path}")
def main():
parser = argparse.ArgumentParser(
description="Generate a C-Space visualization and reconstructed audio from an audio file."
)
parser.add_argument("audio_path", type=str, help="Path to the input audio file.")
parser.add_argument("--config", type=str, default="cochlear_config.json", help="Path to the cochlear config JSON file.")
parser.add_argument("--output-dir", type=str, default=".", help="Directory to save the output files.")
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", help="Device to use for computation (e.g., 'cuda', 'cpu').")
args = parser.parse_args()
# Create output directory if it doesn't exist
os.makedirs(args.output_dir, exist_ok=True)
# --- 1. Set up paths ---
base_name = os.path.splitext(os.path.basename(args.audio_path))[0]
viz_output_path = os.path.join(args.output_dir, f"{base_name}_cspace.png")
recon_output_path = os.path.join(args.output_dir, f"{base_name}_recon.wav")
# --- 2. Load Model and Audio ---
print(f"Loading CSpace model with config: {args.config}")
cspace_model = CSpace(config=args.config, device=args.device)
config = cspace_model.config
print(f"Loading and preparing audio from: {args.audio_path}")
original_audio_np = load_and_prepare_audio(args.audio_path, int(config.sample_rate), args.device)
original_audio_np, _ = normalize(original_audio_np)
# --- 3. Encode and Decode ---
print("Encoding audio to C-Space...")
cspace_data = cspace_model.encode(original_audio_np)
print("Decoding C-Space back to audio...")
reconstructed_audio_np = cspace_model.decode(cspace_data)
# --- 4. Normalize, Calculate Stats, and Save Files ---
reconstructed_audio_np, _ = normalize(reconstructed_audio_np)
print_reconstruction_stats(original_audio_np, reconstructed_audio_np)
save_audio(reconstructed_audio_np, recon_output_path, int(config.sample_rate))
visualize_cspace(cspace_data, cspace_model.freqs, viz_output_path, config.sample_rate)
if __name__ == "__main__":
main()