Files
brandon_lift_share/signalprocess.py
2022-12-30 13:45:43 -05:00

45 lines
1.4 KiB
Python

import numpy as np
from scipy import signal
from numpy.fft import fft, ifft
import matplotlib.pyplot as plt
# Filtering things I have mainly stolen from the internet. I reallt need to learn more so I can do something compitent.
class SignalProcess:
def __init__(self, path):
self.data = np.loadtxt(path, delimiter="\t", dtype=np.float64)
self.times = self.data[:, 0]
self.counts = self.data[:, 1]
self.ave_counts = self.data[:, 2]
def band_pass(self):
fs = 30.0
lowcut = 1.5 * 1.0 / 30.0
highcut = 2.5 * 1.0 / 30.0
nyqs = 0.5 * fs
low = lowcut / nyqs
high = highcut / nyqs
b, a = signal.butter(2, [low, high], "bandpass", analog=False)
filtered_counts = signal.filtfilt(b, a, self.ave_counts, axis=0, padlen=150)
return filtered_counts
def butter_filter(self):
b, a = signal.butter(2, 0.02)
filtered_counts = signal.filtfilt(b, a, self.ave_counts, padlen=150)
return filtered_counts
def fft(self):
sr = 30
ts = 1.0 / sr
X = fft(self.counts)
N = len(X)
n = np.arange(N)
T = N / sr
freq = n / T
plt.stem(freq, np.abs(X), "b", markerfmt=" ", basefmt="-b")
plt.xlabel("Freq (Hz)")
plt.ylabel("FFT Amplitude |X(freq)|")
plt.xlim(0, 10)
plt.show()